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Abstract A previous study of the small deformations
produced by the molecular environment in the atomic densi-
ties has concluded that these deformations reflect and support
all the concepts of the empirical structural chemistry. In the
present work the study is extended to the chemical forces.
Four types are distinguished: Van der Waals, Pauli, bonding
and nuclear unscreening forces. For each type, the origin,
the associated density deformations, the force generated by
these deformations and the main role played by this force
are investigated. It is stressed that Van der Waals complexes,
usual molecules, conformers and chemical processes can be
described in terms of these four forces, and are determined by
the balance between them. It is proved that simple models for
the density are often sufficient for semiquantitative predic-
tions of forces, and can be very helpful for rationalizing the
chemical properties and behavior. Developments are illustra-
ted and supported with specific examples.

Keywords Serafín Fraga · Hellmann–Feynman ·
Molecular forces · Molecular density · Electrostatic theorem

1 Introduction

In 1928, P.A.M. Dirac wrote a celebrated sentence: The
underlying physical laws necessary for the mathematical
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theory of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too
complicated to be soluble. Around the 1960s, when com-
puters started to be accesible to the scientific community,
a group of young researchers faced the task of establishing
firmly grounded theoretical methods, algorithms and compu-
tational programs for the application of those laws to chemis-
try. Prof. S. Fraga played an outstanding role in this exciting
intelectual adventure. As recently reported [1] by a leader of
this movement, E. Clementi, they succeded: a new branch of
chemistry (Computational Chemistry) was born, and a new
powerful tool was made available to chemists for investiga-
ting the properties of matter.

Nevertheless, Computational Chemistry does not exhaust
the possibilities of Quantum Mechanics in chemistry. It is
worldwide known that concepts, laws and language of che-
mistry were mostly developed on an empirical basis before
the advent of Quantum Mechanics and, since the latter has
the capabilities for explaining the whole chemistry, it should
be able to give a theoretical support for them.

This fact was recognized in the early years of Quantum
Mechanics (1930s–1950s) when Heitler, London, Pauling,
Hellmann, Feynman, and many more made important contri-
butions in this direction. However, in the following decades
(from the 1960s on) the effort was moved towards computa-
tional aspects, and the findings of the previous period were
gradually relegated, with few valuable exceptions, to the sta-
tus of scientific curiosities.

Among these exceptions, we consider specially relevant
the papers on the interpretation of the chemical behavior in
terms of electron density and forces by Coulson [2], Hurley
[3–5], Berlin [6], Politzer [7,8], Bader [9–11], Stone [12], and
Deb [13]. This research line, very active in the late 1960s and
early 1970s was almost abandoned in the following years,
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probably due to the lack of suitable tools for exploring its
full capabilities. Our work takes on this line profitting from
recent progress in these tools [14–21].

Analyzing the implications of the Hellmann–Feynman
theorem [22,23], we have recently stressed [24] the basic
role played in the chemical behavior by the small deforma-
tions caused in the atomic densities by the molecular envi-
ronment. Moreover, we have studied [25] these deformations
in an ample set of molecules and proved that they reflect and
support all basic concepts of the empirical structural chemis-
try. The relationship between lone pairs, single, double and
triple bonds, functional groups and so forth, with the den-
sity deformations being so tight that one can regard these
chemical concepts as a symbolic representation of the latter.

In this paper, we extend the analysis to the chemical forces,
i.e., to the forces acting on the nuclei. In the Born–
Oppenheimer approximation (the paradigm of theoretical
chemistry), these forces can be rigorously defined in two
equivalent ways: from the derivatives of the electronic energy
(including the nuclear repulsion) or from the electrostatic
force exerted on nuclei by the whole charge distribution (elec-
tron density plus nuclear charges) of the molecule.

The first way only gives the net force on nuclei, being
scarcely useful for descriptive and interpretative purposes.
On the contrary, the second is plenty of chemical insight
because it enables to know how forces depend on the shape
of the charge distribution, and how parts of a system affect
the forces acting on other parts.

It can be argued that, since physical effects are determined
by net forces, every decomposition of them is arbitrary and
useless. Note, however, that the decomposition of a force is
not only correct but it is the usual way (and often the only
way) to understand the forces acting in complex systems.

In this work we will stress that, in a nonrelativistic
approach, chemical behavior can be described in terms of
four basic forces: Van der Waals, Pauli, bonding and nuclear
unscreening. We will also note that these four types of forces
arise from the electron density, and examine and illustrate
with specific examples which are the components of the den-
sity associated to everyone.

2 Chemical forces: general approach

Let ̂H be the electronic Hamiltonian of a molecule with n
electrons, N nuclei and an external potential

V =
n

∑

i=1

v(ri ) (1)

v(r) = −
N

∑

A=1

ζA

|r − RA| (2)

where ζA denotes the nuclear charge and RA = X A i+YA j+
Z A k the nuclear position.

Following the Born–Oppenheimer prescription, one must
solve

̂HΨ = E Ψ (3)

and use

ET = E + VN = E +
N

∑

A=1

∑

B<A

ζA ζB

|RB − RA| (4)

as the potential energy for nuclear motion. With this potential,
the usual definition of force gives

FA = −∇A ET (5)

where

∇A = i
∂

∂X A
+ j

∂

∂YA
+ k

∂

∂Z A
. (6)

Since E changes with every parameter of v(r), one can write
E ≡ E(R1, ζ1, . . . ,RN , ζN ) and similar expressions for
ET and FA, but the invariance of E under translation and
rotation of the axes system introduces six constraints that
reduce the number of independent parameters to 3N − 6
related to nuclear positions and N to nuclear charges. These
constraints, can be expressed in terms of forces

N
∑

A=1

∇A ET = 0 ⇐⇒
N

∑

A=1

FA = 0 (7)

N
∑

A=1

RA × ∇A ET = 0 ⇐⇒
N

∑

A=1

RA × FA = 0 (8)

thus ensuring that the total force and torque of the system are
zero.

The forces of Eq. 5 are related to the electron density
through the Hellmann–Feynman theorem [22,23] which,
according to Slater [26], is one of the most powerful theo-
rems applicable to molecules. It can be derived in several
equivalent ways [13,27], but all of them lead to

∂E(λ)

∂λp
=

∫

dr ρ(r,λ)
∂v(r,λ)
∂λp

(9)

which is the Hellmann–Feynman theorem for λp, ρ(r,λ)
being the electron density, λ being the set of parameters on
which it depends.

Taking the space coordinates of nucleus A as parameters,
the theorem gives

FA = −∇A ET = −
∫

dr ρ(r,λ) ∇Av(r,λ)− ∇AVN

(10)
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In a fixed conformation, Eq. 10 reads

FA = ζA

∫

dr ρ(r,λ)
r − RA

|r − RA|3 − ζA

∑

B �=A

ζB
RB −RA

|RB −RA|3
(11)

so that the force on nucleus A is the classical electrostatic
force exerted on A by the electron cloud and the remaining
nuclei.

We will consider now a configurational or reactive process
in which the nuclei move along the path determined by a
parameter µ: RI (µ) = i X I (µ)+ j YI (µ)+ k Z I (µ) and let
µ1 and µ2 be two values of the path parameter. Then, the
energy difference between the corresponding conformations
is

∆ET =
µ2
∫

µ1

dµ
∫

dr ρ(r, µ)
∂

∂µ
v(r, µ)+∆VN

=
µ2
∫

µ1

dµ
N

∑

A=1

FA(µ)
∂RA(µ)

∂µ
(12)

where the last equality comes from

∂

∂µ
v(r, µ) =

N
∑

A=1

(∇Av
) ∂RA

∂µ
. (13)

This is the integrated Hellmann–Feynman (electrostatic)
theorem, again a classical expression that relates variations
of energy with the work done by electrostatic forces.

The first integral of Eq. 12 can be eliminated with the fol-
lowing argument. Let E(µ1), Ψ (µ1) and E(µ2), Ψ (µ2) be
the initial and final energies and wavefunctions. Multiplying
the eigenvalue equation at µ1 by Ψ (µ2), and that at µ2 by
Ψ (µ1), integrating with respect to the electron coordinates,
and subtracting the resulting expressions, one finds

∆E = S−1
21

∫

dr ρ21(r) v21(r) (14)

where S21 is the overlap of Ψ (µ1) and Ψ (µ2), ρ21(r) is the
transition density involving these functions, and v21(r) =
v(r, µ2)− v(r, µ1).

This is the integral Hellmann–Feynman theorem [28,29],
which relates the difference of the electronic energy at two
conformations with the change in the electrostatic energies
of the nuclei, at fixed electron cloud determined by the nor-
malized transition density.

Apart from the theoretical implications [30], the
Hellmann–Feynman theorem is a cornerstone in the inter-
pretation of the chemical bond. Note for instance that there
is an extended tendency to explain the bond directly from
the features of the kinetic energy or the electron repulsion.
However, by deriving the usual expression of the energy and

using Eq. 9 one finds

0 =
∫

dr v(r,λ)
∂ρ(r,λ)
∂λp

+
∫

dr
∫

dr′
[

δ(r − r′)

×1

2
∇ ∇′ ∂ρ̂(r, r′,λ)

∂λp
+ ∂

∂λp

Γ (r, r′,λ)
|r − r′|

]

(15)

where ρ̂(r, r′,λ) is the density matrix and Γ (r, r′,λ) is the
pairs density. From Eq. 15, it follows that kinetic energy and
electron repulsion are part of a constant along any conforma-
tional or reactive change (i.e., during the bond formation or
breaking), and hence their changes cannot be directly respon-
sible [31] for any change in the electron energy. The effect of
these properties on energy is indirect: to know it, one must
determine how they influence the density and analyze whe-
ther this influence gives rise to attractive forces or not.

As remarked before, the forces can be calculated from
the energy [32] Eq. 9 or from the density Eq. 14. For the
exact energy and density both ways give the same results, but
this does not necessarily hold for approximated energy and
density. In this case, one is faced with two different problems:
how near are both sets of approximate forces, FA(ρ

(ap)) and
FA(E (ap)), to the exact ones FA, and how near are to one
another.

Since in a variational calculation, error boundary is unk-
nown, it is not possible to answer the first question unless the
exact forces are known, but the second question is affordable.
In this regard, it is usually said that the Hellmann–Feynman
theorem is strictly fulfilled when the forces obtained from
the gradient of an approximate energy equal those computed
from the corresponding approximate density.

The fulfillment of the electrostatic theorem was first stu-
died by Hurley [3–5] and next by other authors [33–38] in
terms of conditions on the basis sets that are not satisfied by
the ones usually employed. Notice, however, that the impor-
tant question in practice is the degree of fulfillment, which
determines whether the electrostatic forces are sufficiently
accurate to replace the energy gradient.

Following a pioneer work by Nakatsuji [39] on this sub-
ject, the problem has been recently readdressed [20,21] to the
search of criterions for obtaining moderate size basis sets of
the usual type with a high degree of fulfillment of the theo-
rem, and today high performance basis sets of Slater [21]
and Gaussian [40] types are available.

To end this section, we want to stress that Eqs. (11) and
(12) evince the deep understanding of a chemical process
provided by its approach from density. One can know not
only the variations of energy but also the driving forces of
the process, their contributions to the energy variation, what
components of the density are responsible for these forces
and how they are, where they are localized, and so forth.
Clearly, suitable partitions of the density can be very help-
ful in this analysis but, when choosing them, one must be
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aware that the essential point in the density/forces/energy
relationships is how the density evolves when the λ parame-
ters vary—i.e., how ρ(r,λ) depends on λ—whereas most
current descriptions are aimed at analyzing the dependence
of ρ(r,λ) with r at fixed λ.

3 Van der Waals forces in terms of density

LetΨ α , EαT andΨ β , EβT be the electronic wavefunctions and
energies of two isolated systems containing, respectively, nα
and nβ electrons and Nα and Nβ nuclei.

Assuming constant nuclear charges Ψ α , EαT and Ψ β , EβT
will depend, respectively, on 3Nα−6 and 3Nβ−6 parameters,

λα = (λα1 , . . . , λ
α
3Nα−6) and λβ = (λ

β
1 , . . . , λ

β
3Nβ−6), and

each of their sets of 3Nα and 3Nβ forces will be constrained
by six equalities like (7) and (8).

Let us consider now their adduct. Assigning electrons 1
to nα to ̂Hα and nα + 1 to nα + nβ to ̂Hβ , the electron
hamiltonian can be written

̂Hαβ = ̂Hα + ̂Hβ + ̂Hαβ
int (16)

with

̂Hαβ
int = −

nα
∑

i=1

Nβ
∑

B=1

ζB

|ri − RB | −
nα+nβ
∑

j=nα+1

Nα
∑

A=1

ζA

|r j − RA|

+
nα
∑

i=1

nα+nβ
∑

j=nα+1

1

|ri − r j | (17)

Since the adduct has NA+NB nuclei, the eigenfuctions,Ψ αβ ,
and eigenvalues, Eαβ , of ̂Hαβ depend on 3Nα + 3Nβ − 6
parameters. With respect to the isolated systems, there are
six additional degrees of freedom that, attaching somehow
parallel axis systems to the two subsets of nuclei, can be
associated to the relative translation and rotation of these
systems.

Let us suppose that the distance between the two subsets
is made larger and larger. Because of the nearly exponen-
tial decay of the wavefunction Ψ αβ with the distance to the
nuclei, it must tend to zero in the region between the two sub-
systems, and if we write the functions as an antisymmetrized
product of functions at α and β

Ψ αβ =
∑

p

∑

p′
cpp′ A(Ψ α

p Ψ
β

p′) (18)

the overlap between Ψ α
p and Ψ β

p′ will be zero, so that

ραβ(r) = ρα(r)+ ρβ(r) (19)

Γ αβ(r, r′) = Γ αα αα(r, r′)+ Γ ββ ββ(r, r′)+ Γ αα ββ(r, r′)
(20)

In the LCAO context, this means that the density will contain
couples of basis functions centered either both at α or both
at β, but there will appear no cross terms. Moreover, the
pairs density will contain pairs of couples both centered at
α, Γ αα αα(r, r′), or both at β, Γ ββ ββ(r, r′), or one at α and
another at β, Γ αα ββ(r, r′).

As a consequence of Eqs. (19) and (20), the terms asso-
ciated to ̂Hαβ

int in Eq. 9 will decay as powers of the inverses
of the distances from the nuclei located at α and those at
β and, because this is a smooth decay, there will be a wide
region of the conformational space where overlap is negli-
gible but interactions are not. This is the region where the
interaction of the two systems is entirely determined by the
Van der Waals forces.

Note that for very long distances, where not only overlap
of Ψ α

p with Ψ β

p′ is almost zero, but also the interaction can

be neglected, one has: Ψ αβ = A(Ψ α Ψ β), and therefore

ραβ(r) = ραis(r)+ ρ
β
is(r) (21)

Γ αβ(r, r′) = Γ αα ααis (r, r′)+ Γ
ββ ββ

is (r, r′)

+1

2

[

ραis(r) ρ
β
is(r

′)+ ραis(r
′) ρβis(r)

]

(22)

where is refers to isolated systems. Notice, by the way, that
the asymptotic fulfillment of Eq. (22) is the condition for
correct dissociation of a variational wavefunction.

The Van der Waals forces can be defined from the deriva-
tives of the full energy EαβT , with respect to the degrees of
freedom that determine the relative position of the α and β
systems, i.e., from the force and torque acting on them

Fα =
∑

A∈α
FA Fβ =

∑

B∈β
FB Fα = −Fβ (23)

τα =
∑

A∈α
RA × FA τβ =

∑

B∈β
RB × FB τα = −τβ (24)

where the last equalities come from Eqs. (7) and (8).
In order to gain insight on the relationship between the Van

der Waals forces and the density, we will use Eqs. (11), (19)
and (21), to rewrite the first equation of (23) which, taking
into account that the net force on the isolated α system is
zero, becomes

Fα =
∑

A∈α
ζA

[∫

dr ∆ρα(r)
r − RA

|r − RA|3 +
∫

dr ρβ(r)

× r − RA

|r − RA|3 −
∑

B∈β
ζB

RB − RA

|RB − RA|3
]

(25)

where

∆ρα(r) = ρα(r)− ραis(r) (26)

In molecules, the two last terms of Eq. (25) cancel out almost
completely, so that the small changes undergone by the den-
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sity of each system due to the presence of the other become
determinant.

A nice enlightening illustation is provided by the descrip-
tion of the Van der Waals forces of H2 in terms of its density.
As remarked above, at large distances, the density is almost
zero in the region between the atoms and, therefore, it can
be unambiguously expanded in real spherical harmonics—as
defined in appendix—times radial factors at each nucleus

ραβ(r) =
∑

l

∑

m

zm
l (rα) f αlm(rα)+

∑

l

∑

m

zm
l (rβ) f βlm(rβ)

(27)

with rα = r − Rα and rβ = r − Rβ . This expansion stresses
that the atomic densities, spherical for the isolated H atoms,
will be deformed by the interaction. Notice that Eq. (27)
is not an approximation but merely a representation of the
density aimed at evincing its form: the terms with l = 1
describe the dipole-type deformation, those with l = 2, the
quadrupole-type deformation, and so forth.

As a specific example, we have carried out a CISD cal-
culation of the density of H2 at an internuclear distance of
20 bohr with a [5,5,4,2,1] STO basis set using the SMILES
[41–43] package for integrals and MOLPRO [44–48] for
energy optimization. The density has been expanded with
DAM [14–17], according to Eq. (27), yielding the terms with
l = 1, 2 and 3 depicted in Fig. 1.

Fig. 1 Density deformations responsible for the Van der Waals forces
in H2 computed at CI level. Contour surfaces of R7 z0

l (rα) fl0(rα) for
l = 1, 2, 3 at R = 20 bohr. Contour values 1, 1/3, 1/10. Dark surface
charge accumulation; light surface charge depletion

Using Eq. (27), the force becomes

Fα =
∑

l

∑

m

∫

dr zm
l (rα) f αlm(rα)

r − Rα
|r − Rα|3

+
∑

l

∑

m

∫

drzm
l (rβ) f βlm(rβ)

r−Rα
|r−Rα|3 − Rβ−Rα

|Rβ − Rα|3 .

(28)

Integrations of Eq. (28) are facilitated by adopting a lined up
system with α placed at the origin and β at a distance R on
the negative z hemiaxis. In such a system, it can be easily
realized that Fαx = 0, Fαy = 0 and

Fαz = 4π

3

∞
∫

0

drα rα f α10(rα)

−
∞
∑

l=1

2

Rl+2

[

4π

2l + 1

∞
∫

0

drβ r2l+2
β f βl0(rβ)

]

(29)

where R = |Rβ − Rα|, and the brackets are the multipolar

moments Qβ
l0, of the cloud around nucleus β.

The first term in the r.h.s. of (28) is the force exerted by
the charge distribution of atom Hα on its own nucleus. As
it can be seen, this self-pulling (internal) force is entirely
determined by the dipole-type term z0

1(rα) f α10(rα), of the
density. The second and third terms are the force exerted
by the Hβ atom (cloud and nucleus) on nucleus α. At long
distances, as considered here, the nucleus β is completely
screened by the spherical part of its density and, therefore, the
force exerted by this atom on nucleus α is due to the dipole,
quadrupole and higher order terms of its density. The DAM
package is also capable of solving the integrals of Eq. (29)
and, for the density of the CISD calculation, it gives

Fαz (20)=−0.3299 · 10−7−0.1062 · 10−9 =−0.3309 · 10−7

(30)

all in atomic units (1au = 1 hartree/bohr). The first number
is the value of the self-pulling force, and the second one,
that of the external force. Clearly, the Van der Waals force is
mainly determined by the self-pulling force, as advanced by
Feynman almost seventy years ago [22]. The leading term in
the series of Eq. (29), due to the dipole of β, Qβ

10 = 0.3404 ·
10−6 au at 20 bohr, gives a contribution of −0.085 ·10−9 au,
which is only about a 0.2% of the total Van der Waals force.

Since one may have concerns about the adequacy of the
CI method in this context, we have tested the CI results by
comparing them with those of the perturbation theory. As
noted in appendix, this theory allows one to write f α10(rA)

and f β10(rB) in the form
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Fig. 2 Comparison of perturbative and CI dipole term in H2. Values
of R7 z0

1(rα) f10(rα) along the internuclear axis (z). Dashed line CI at
R = 25 bohr; dotted line CI at R = 20 bohr; solid line perturbative

f α10(r) = e−2r
[

P7(r)

R7 + P9(r)

R9 + · · ·
]

(31)

where Pn(r) = ∑∞
k=0 rk c(n)k are power series independent

of R, c(n)k being numeric coefficients. The accurate calcu-
lation of the leading term P7(r), allows us to compare both
approaches. In Fig. 2, the dipole-type deformations,
R7 z0

1(r) f10(r), obtained with CI calculations at R = 20
and R = 25 bohr are depicted together with the perturbative
term z0

1(r) e−2r P7(r). It can be seen not only a reasonable
agreement but also a correct convergence of the CI results
towards the perturbative ones when increasing R. Moreover,
using the perturbative result in Eq. (29) one has:

Fαz (R) ≈ − 1

R7 38.99416023 − 2

R10 · 394.511. (32)

Note that the first term contains the well known [49] 6 C6

coefficient and the second is the contribution of the dipole
Qβ

10 in the series of Eq. (29). At R = 20 bohr, Qβ
10 =

0.3082 10−6 au, and

Fαz (20) ≈ −0.3046 · 10−7 − 0.0771 · 10−10 = 0.3054 · 10−7

(33)

which must be compared with the values of Eq. (30) for
the internal (self-pulling) and external components of the
force. Comparison is satisfactory, bearing in mind the trunca-
tion of the perturbative solution to the term with P7(r)—see
Eq. (31)—and the absence, in the perturbative external force
of multipoles higher than Q10 on atom β—see Eq. (29).

4 Pauli and bond forces in terms of density

At distances where overlap starts to be noticeable, new com-
ponents coming from the two-center distributions appear in

the density. They depend on the antisymmetry and spin of
the wavefunction, and increase so rapidly with the overlap
that, when distance decreases, they quickly dominate over
Van der Waals forces.

In order to illustrate them, we will go back to the H2

example. In this molecule, overlap becomes negligible at
internuclear distances above 10 bohr. We have carried out
CISD calculations using the aforementioned STO basis set
in the range of distances between 7 and 10 bohr for the 3Σu

and 1Σg states, and analyzed the density, finding that den-
sity deformations have now components coming from both
the one- and two-center distributions. There is no problem
to expand the first ones in spherical harmonic times radial
factors. Moreover, the DAM package enables to expand the
two-center distributions after partitioning them with the mini-
mal deformation criterion. Figures 3 and 4 show separa-
tely the two contributions to the dipole-type deformations
z0

1(r) f10(r), of the density in the triplet and singlet. Notice
that this is the main deformation term because, as remarked
above, it entirely determines the dominant self-pulling force
and gives the main contribution to the interatomic force at
these distances.

A glance at these figures is sufficient to see that the new
terms play opposite roles in the triplet and singlet states. In
the triplet the new component of the dipole term opposes to
the previously existing one (associated to the attractive Van
der Waals force) and generates a repulsive force that increases
with the overlap, becoming quickly dominant when distance
decreases.

On the contrary, in the singlet, the new component rein-
forces the Van der Waals force thus increasing the net attrac-
tive force when the atoms approach each other. Figure 5
shows the variation of net forces and energy with the internu-
clear distance for both states. We include Kolos’ [50] results
for comparison.

Repulsive forces associated to density deformations like
that of the triplet will be called Pauli forces, whereas the
attractive ones like in singlet are the so-called bond forces.

Since the terms associated to Pauli and bond forces are
caused by antisymmetry and spin of the wavefunction, it is
reasonable to expect qualitatively correct results, even from
rough approximations to the wavefunction, provided that
antisymmetry and spin are taken into account properly.

As an illustrating example, we will take the antisymmetri-
zed spin-adapted products of the solutions of the isolated H
atoms–see (22), which are the well known Heitler–London
wavefunctions of H2. Taking the function for the singlet, the
density is

ραβs = 1

1 + λ2 [a(r) a(r)+ b(r) b(r)+ 2 λ a(r) b(r)]
(34)
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Fig. 3 Density deformations responsible for the Pauli forces in the
3Σu of H2. Contributions to the dipole term in electron/bohr3. Dotted
lines two-center, dashed lines one-center, solid lines total. Upper R =
8.0 bohr; middle R = 7.8 bohr; lower R = 7.6 bohr

and taking that of the triplet

ρ
αβ
t = 1

1 − λ2 [ a(r) a(r)+ b(r) b(r)−2 λ a(r)b(r)] (35)

where a(r) = (

ζ 3

π

)1/2
e−ζ rα , b(r) = (

ζ 3

π

)1/2
e−ζ rβ , and

λ = 〈 a(r) | b(r) 〉.
Using again a lined-up axis system, the force on α provi-

ded by this simple model is

Fig. 4 Density deformations responsible for the bond forces in the
1Σg of H2. Contributions to the dipole term in electron/bohr3. Dotted
lines two-center, dashed lines one-center, solid lines total. Upper R =
8.0 bohr; middle R = 7.8 bohr; lower R = 7.6 bohr

Fαz (R) = 1

R
− 1

1 ± λ2

ζ 3

π

∫

dr
z0

1(r)
r3

[

e−2ζ r + e−2ζ rβ

±2λ e−ζ r e−ζ rβ
]

(36)

where the plus sign holds for singlet, and the minus for tri-
plet. Expressions for all these integrals have been recently
reported [51]. Using them, the force can be easily obtained
as an explicit function of R and, by integrating the force with
Eq. 12, the energy can be obtained as well. In order to give
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Fig. 5 Full CI net forces (upper plate) in µhartree/bohr, and energies
(lower plate) in µhartree for the 3Σu and 1Σg of H2. Kolos’ energies
(×) included for comparison

an idea of what one can expect from this simple approach,
we depict in Fig. 6 the force of Eq. (36) for the triplet (with
ζ = 1) together with the leading term, −6C6/R7, of the Van
der Waals force and their sum. Moreover, we have included
the CI reference force—see Fig. 5—for comparison. Clearly,
although the simple Heitler–London density cannot describe
the Van der Waals forces, it gives the correct trend for Pauli
force.

The underlying idea of this approach is that the antisym-
metrized spin-adapted products of the wavefunctions of the
isolated systems give correct trends for the density deforma-
tions responsible for Pauli and bond forces. The extension of
this idea would enable to carry out qualitative analysis and
predictions of the forces acting on complex systems from
simple models of the density. We will illustrate how this idea
can be extended by means of a couple of examples.

Let α and β be two closed shell systems that, when iso-
lated, are described by two closed shell determinants Ψ α =
|φα1 φ α1 . . . φαnα φ

α

nα | and Ψ β = |φβ1 φ β1 . . . φβnβ φ βnβ | .
The antisymmetrized singlet product of these functions is

Ψ αβ = |φα1 φ α1 . . . φαnα φ
α

nα φ
β
1 φ

β

1 . . . φ
β
nβ φ

β

nβ | . (37)

Fig. 6 Components of Pauli and Van der Waals forces (in
µhartree/bohr) for the 3Σu of H2 according to the Heitler–London plus
dispersion model. Dark solid line Pauli force; light solid dispersion;
dotted net force. Full CI net force (dashed) included for comparison

Since this function is invariant under nonsingular transforma-
tions of the occupied orbitals, one can carry out rotations in
the sets {φαi }nα

i=1 and {φβi }nβ
i=1 to obtain new orbitals: {ai }nα

i=1,
{bi }nβ

i=1 such that

〈 ai | a j 〉 = δi j 〈 bi | b j 〉 = δi j 〈 ai | b j 〉 = λi δi j . (38)

In terms of these orbitals, the approximate wavefunction is

Ψ αβ = | a1 a 1 . . . anα a nα b1 b 1 . . . bnβ b nβ | (39)

and the density derived with the aid of Lowdin rules [52],
assuming nβ > nα , is

ραβ(r) =
nα
∑

i=1

2

1 − λ2
1

[ ai (r) ai (r)+ bi (r) bi (r)

−2 λi ai (r) bi (r) ] +
nα+nβ
∑

i=nα+1

2 bi (r) bi (r) (40)

Clearly, the overlapping orbitals (λi �= 0) behave very much
like those of the triplet of H2—see Eq. (35)— and, there-
fore, the associated density deformations must generate Pauli
forces.

As a specific illustration, we have used the Hartree–Fock
wavefunction [53] of the isolated He in Eq. (39) to approxi-
mate the Pauli forces of the He2 system as a function of R.
Results are depicted in Fig. 7 together with the leading term
of the Van der Waals force [54,55], − 6c6

R7 , and their sum.
Moreover, the energy was obtained by integrating the force.
This simple model predicts a well with a deep of 23µhartree
at Re = 5.83 bohr. The currently accepted values [54,55] are
34.7 µhartree and 5.61 bohr, so that the approximate results
are qualitatively correct and quantitatively not too bad, given
the crudeness of the model.

As a second example, we will consider two radicals that
approach each other to form a closed shell molecule with
a single bond. Assuming that the radicals are described by
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Fig. 7 Competence between Pauli and Van der Waals forces (in
µhartree/bohr) for the 1Σg of He2 according to the Heitler–London
plus dispersion model. Dark solid line Pauli force; light solid disper-
sive force; dotted net force

single open-shell restricted Hartree–Fock (OSRHF) determi-
nants: Ψ α = |φα1 φα2 φ α2 . . . φαnα φ

α

nα | and Ψ β = |φβ1 φβ2
φ
β

2 . . . φ
β
nβ φ

β

nβ | , and carrying out the biorthogonalization of
both sets of occupied orbitals—Eq. (38)— the adduct wave-
function for the singlet can be written as

Ψ αβ = | a1 a2 a 2 . . . anα a nα b 1 b2 b 2 . . . bnβ b nβ |
− | a 1 a2 a 2 . . . anα a nα b1 b2 b 2 . . . bnβ b nβ | . (41)

Now, applying Lowdin rules and taking into account
Eq. (38) one obtains

ραβ = 1

1 + λ2
1

[a1(r)a1(r)+ b1(r)b1(r)+ 2λ1a1(r)b1(r)]

+
nα
∑

i=2

2

1 − λ2
1

[ ai (r) ai (r)+ bi (r) bi (r)

−2 λi ai (r) bi (r) ] +
nα+nβ
∑

i=nα+1

2 bi (r) bi (r). (42)

It is evident from this expression that overlapping orbitals
of the closed shells give, as in the previous case, density
deformations that generate Pauli forces, but the orbitals in
the open shell behave just like those of the singlet of H2—
Eq. (34)—and, therefore, yield bond forces. Clearly, the beha-
vior of these systems will be ruled by the competition between
their Pauli and bond forces, and their structure relaxations
can be predicted on the basis that it must tend to follow these
forces, a process which necessarily will lower the energy.

To illustrate this, we will consider two methyl radicals
faced to one another at a distance RCC = 3.5 bohr (larger
than the equilibrium distance). OSRHF calculations with the
VB1 STO basis set [56] (again with SMILES and MOL-
PRO) give for isolated radical CH3 a planar structure with
RC H =2.042 bohr. Taking the OSRHF function of the isola-
ted methyl groups in Eqs. (41) and (42), a rough density can

Fig. 8 Competence between Pauli and bond forces in two faced methyl
groups at RCC = 3.5 bohr: planar (upper) and released (lower) confor-
mations. Forces in arbitrary units

be obtained whose forces, schematized in the upper plate
of Fig. 8, tend to bend the C–C–H angle. The CAS (2,2)
calculation with this basis set gives at zero Pauli force (the
minimum of energy for this C–C distance) a C–C–H angle
of 107◦ —see lower plate of Fig. 8—so that, once again, the
simple model gives the correct trend.

5 Nuclear unscreening

According to Eq. 11, every nucleus is repelled by the other
nuclei and attracted by the electron cloud. As the electron
density is strongly localized around the nuclei, for nuclei
placed far away, the repulsive effect of their charges will be
almost completelly cancelled out by the cloud around them.
However, the electron screening will decrease as the nuclei
approach each other and the corresponding repulsive forces
will increase without any bound. These repulsive contribu-
tions will be called nuclear unscreening forces, and play an
important role in determining the molecular conformations,
because they impede the nuclear collapse under the effect of
bond forces.

In order to better understand these forces, it is convenient
to consider a partition of the density into fragments associated
to nuclei

ρ(r) =
∑

A

ρA(r) (43)

whose detailed shapes are irrelevant provided that Eq. (43) is
fulfilled and that every fragment bears almost all the charge
distribution around its associated nucleus. Once the partition

123



718 Theor Chem Account (2007) 118:709–721

has been made, the density of each fragment can be separated

ρA(rA) = ρA
00(rA)+∆A(r) (44)

in a spherical part which, after integration over the whole
space, gives the total charge of ρA(rA)

ρA
00(rA) = 1

4π

2π
∫

0

dφA

π
∫

0

sin θA dθA ρ
A(r) (45)

and a deformation part ∆A(r), containing terms other than
the spherical one, which integrate to zero. By combining
Eqs. (43), (45) with (11), one obtains

FA = ζA

∑

B

∫

dr ∆B(r)
r − RA

|r − RA|3

−ζA

∑

B �=A

ζ eff
B

RB − RA

|RB − RA|3 (46)

where

ζ eff
B = ζB − 4π

|RA−RB |
∫

0

drB r2
B ρ

B
00(rB). (47)

The first term in the r.h.s. of Eq. (46) determines how the force
on A is affected by the deformation of the clouds around
the nuclei. As discussed above, it determines the Van der
Waals forces at long distances, and Pauli and bond forces at
intermediate ones.

The second term gives the components of the force due
to the spherical parts of the clouds. These are the nuclear
unscreening forces, the simplest ones of the four types. They
are directed along the internuclear axis, necessarily repul-
sive for |RB − RA| small, and quickly increase boundless as
|RB − RA| tends to zero.

Since the spherical terms contain all the electronic charge,
at medium distances, the unscreening forces take the form
of charge transfer forces which can be easily understood
from the simple Gauss theorem. Note in particular that, if
ρB

00(rB) is everywhere positive, as it must be, a fragment B
with zero or positive net charge has ζ eff

B > 0 and, there-
fore, its contribution to the second term of Eq. (46) will be
repulsive. However, if B has negative net charge, the nature
of this contribution depends on the distance |RA − RB |. At
sufficiently long distance ζ eff

B will be the negative charge of
B—see Eq. (47)—ζ eff

B < 0, and the contribution in Eq. (46)
is attractive but, since the integral of Eq. (46) decays with
|RA − RB |, at small distance ζ eff

B > 0 and the contribution
to (46) is repulsive.

It must be stressed that, due to the absence of cloud to cloud
interactions in the Hellmann–Feynman context, the conven-
tional ideas about the electrostatic forces involving ions must
be carefully reviewed. As an illustrative example, we will
consider a pair formed by positive and negative spherical

Fig. 9 Energy of F2 as a function of the internuclear distance at RHF,
CAS and MRCI levels

ions. According to the previous discussion, in the Hellmann–
Feynman framework the positive ion repells the nucleus of
the negative partner at all distances, whereas this latter will
attract the former at long separation but repell it at short dis-
tance.

In the conventional electrostatic view, each ion is regarded
as a cloud-nucleus unit and all interaction forces are taken
into account, including the repulsion between clouds. Howe-
ver, this repulsion makes sense only in a two-electron inter-
action which is completely absent in the Hellmann–Feynman
framework, a fact that is not always considered [57].

As an illustrative example we choose here the F2 molecule.
Energy curves obtained from RHF, valence CAS and MRCI
(including all single and double excitations over valence
CAS) are plotted in Fig. 9. They were computed with the
FVB1 STO basis set, using again SMILES for STO integrals
and MOLPRO for energy optimization.

The difficulties in computations of this molecule are
widely known. The RHF curve lies entirely over the RHF
energy of the separated atoms and has a minimum at a too
short distance: Re(RH F) = 2.52 bohr. The CAS curve is
qualitatively correct, with Re(C AS) = 2.80 bohr, slightly
longer than the experimental value [58]: Re(exp)= 2.71 bohr,
and the well depth, about 16 kcal mol−1, is much smaller than
the experimental value [58], of 38.3 kcal mol−1. The MRCI
gives the correct equilibrium distance Re(M RC I ) = 2.71
bohr but the well depth—about 30 kcal mol−1—is still low.

These difficulties can be predicted from the analysis of the
forces. The F2 molecule is isoelectronic to ethane and, there-
fore, like in this, there is a competence between valence Pauli
and bond forces. However, since Pauli forces cannot be mini-
mized by means of a conformational relaxation, this minimi-
zation is accomplished through a relaxation of the electronic
structure whose description requires high level calculations.

The atomic density deformations of F2 –∆A(r) of Eq. (44)
given by DAM– plotted in Fig. 10 exhibit a dominant qua-
drupole type shape. Since this quadrupole deformation yields
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Fig. 10 Density deformations of F2 (upper) and its dipole components
(lower) from the MRCI density at the equilibrium distance. Countour
surface of ±0.04 electron/bohr3

repulsive external forces and zero internal force, in absence
of terms other than quadrupole, the molecule could not be
stable. A more detailed decomposition of ∆ρ(r) in terms
with l = 1, 2, . . . shows—see lower plate of Fig. 10—small
dipole terms with two lobes embedded in ∆ρ(r). The inner-
most is sharply concentrated close to the nucleus, yieldig
attractive forces, whereas the outermost is diffuse and repul-
sive. The internal net force results from the balance of the
opposite effects of these terms, and is attractive because the
first term dominates over the second.

Note, by the way, that this rearrangement of the charge
in the binding region yields attractive forces without the
charge transfer from antibinding to binding regions required
by Berlin’s condition [6], a fact first recognized by Spackman
[59].

Figure 11 shows the forces acting on a nucleus of F2 as
computed with the DAM package from the RHF, CAS and
MRCI densities. The components of the force arising from
density deformations (upper plate) and those coming from
the spherical part of the cloud (nuclear unscreening force,
lower plate) are depicted separately. The repulsive curve of
Fig. 11 (upper plate) is mainly the external force caused by
the quadrupole-type deformation, and is clearly incorrect in
case of RHF. Attraction is due to self-pulling, i.e., to the
dipole term of the density deformations, thus coming from the
subtle balance of the two opposite effects discussed above.
Since these forces are sensitive to errors in the small density
deformations, high level calculations are required to obtain
accurate results. This sensitiveness contrasts with the strong
stability against changes in the computational level of the
nuclear unscreening forces shown in Fig. 11 (lower plate).
As stressed above, the nuclear unscreening forces are quan-
titatively correct even for the basically wrong RHF density.

6 Conclusions

The attractive Van der Waals and bond forces and the repul-
sive Pauli forces are mainly caused by the small deformations

Fig. 11 Forces on nuclei (hartree/bohr) of F2 as functions of the inter-
nuclear distance for RHF (dotted lines), CAS (dashed) and MRCI
(solid) densities. Upper plate external repulsive (positive) and self-
pulling (negative) forces caused by the density deformations. Lower
plate nuclear unscreening forces

produced in the atomic densities by the molecular environ-
ment, and can be related to the self-pulling of the nuclei by
the dipole-type terms imbedded in these deformations.

The nuclear unscreening forces are due to the spherical
clouds around the nuclei. At medium distances they take the
form of charge transfer forces between positive and nega-
tive pairs, that cannot produce stable systems and, at short
distances, they are repulsive.

The interaction of two stable closed shell molecules or
atoms in the region of low (but not negligible) overlap of their
wavefunctions is determined by the competence between Van
der Waals and Pauli forces. Models for density obtained from
the antisymmetrized spin-adapted products of simple wave-
functions of the isolated monomers are often sufficient to give
correct approximations to Pauli forces. Therefore, if approxi-
mations to Van der Waals forces are available, one can make
reasonable predictions on the geometry and stability of Van
der Waals complexes.

At moderate distances (near equilibrium) Pauli, bond and
nuclear unscreening forces compete. Since the latter depend
on the spherical parts of the clouds, their effects can be easily
understood from Gauss theorem and can be easily described
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by rough wavefuntions, so that their values are almost insen-
sitive to the method employed for computing the density. On
the contrary, the small density deformations that cause the
Pauli and bond forces can be strongly dependent on the envi-
ronment and high level calculation are often needed to obtain
correct descriptions.

Chemical forces depend on the density and every partition
of density in chemically meaningful contributions is accom-
panied by the corresponding decomposition of the forces and
conversely. Obviously, this decomposition is not unique, and
a particular choice is a matter of mere convenience.

The partition chosen herein is aimed at supporting on den-
sity the forces usually employed in chemistry. Van der Waals,
bond and Pauli forces, which belong to the common che-
mical language—though the latter are controversial [60–63]
—are herein associated to specific deformations of the den-
sity. Nuclear unscreening forces are not usually considered
but are necessary in order to complete the total force.

We note finally that, in the Hellmann–Feynman approach,
all this four types of forces are rooted in the density, thus
having a similar conceptual support. In a different approach,
in which for instance the separation of the total force into
components is considered useless, one may say that Pauli
repulsions exist only in the eye of the beholder [62] but,
with similar arguments, the existence of bond forces, Van
der Waals and so forth can be likewise denied. This is clearly
a perspective that sets the results of Quantum Mechanics far
away from chemical intuition.
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Appendix: Dipole-type deformation on H2 from pertur-
bation theory

The standard perturbative equations can be written in the
form

(H (0) − E (0))ψ(n) = (E (1) − V )ψ(n−1) +
n

∑

i=2

E (i)ψ(n−i)

(48)

where E (i) and ψ(i) are the successive corrections to energy
and wavefunction, and H (0) and V are the zeroth order hamil-
tonian and perturbation operator, respectively. The perturba-
tion operator is given in Eq. 17, and for H2 at large distance

reads

V =
∞
∑

l=1

∞
∑

l ′=1

l<
∑

m=−l<

(2 − δm,0)(l + l ′)!(−1)l
′+|m|

(l + |m|)!(l ′ + |m|)!

× zm
l (r) zm

l ′ (r
′)

Rl+l ′+1
(49)

with the real spherical harmonics defined by

zm
l (r) = rl zm

l (r/r)

= rl (−1)m Pm
l (cos θ) cos(mφ) m ≥ 0

zm
l (r) = rl zm

l (r/r)

= rl (−1)|m| P |m|
l (cos θ) sin(|m|φ) m < 0. (50)

Grouping together the perturbative terms with the same
power of R, the wavefunction can be written as

ψ =
∞
∑

k=0

φ(k)

Rk
(51)

where φ(k) can be expanded in products of spherical harmo-
nics times radial factors which, in turn, are expressed as sym-
metrized products of exponentials times series of Laguerre
polynomials

φ(k) =
∑

ll ′
φ
(k)
ll ′ (52)

where

φ
(k)
ll ′ = ̂S

l
∑

m=−l

l ′
∑

m′=−l ′
zm

l (r) zm′
l ′ (r

′) e−r−r ′

×
pmax
∑

p

pmax
∑

q

c(k)lml ′m′
pq L2l1+1

p (2r)L2l2+1
q (2r ′) (53)

and ̂S is the symmetrizer.
In this way, the perturbative Eq. (48) take the form

(H (0) − E (0))φ(k) =
∑

lm

∑

l ′m′
zm

l (r) zm′
l ′ (r

′) F (k)lml ′m′(r, r ′)

×e−r−r ′
(54)

and, after projection in the same basis of spherical harmonics

times Laguerre functions, the c(k)lml ′m′
pq are obtained solving

a linear system of equations.
To obtain the non-vanishing contribution of order R−7 to

the dipole term of the density, ρ10(r), one needs the first
order, φ(3)11 , φ

(4)
21 , and second order, φ(7)10 , corrections. Thus,

one has

ρ10(r) = 2

R7

3

4πr

{

z0
1(rα)

2π
∫

0

dφα

π
∫

0

dθα sin θα z0
1(rα/rα)
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×
∞

∫

0

dr′
[

φ
(3)
11 (r, r′)φ(4)21 (r, r′)+φ(0)00 (r, r′)φ(7)10 (r, r′)

]

+z0
1(rβ)

2π
∫

0

dφβ

π
∫

0

dθβ sin θβ z0
1(rβ/rβ)

×
∞

∫

0

dr′
[

φ
(3)
11 (r, r′) φ(4)21 (r, r′)+φ(0)00 (r, r′) φ(7)10 (r, r′)

]}

= 1

R7

[

z0
1(rα) e−2rα P7(rα)+ z0

1(rβ) e−2rβ P7(rβ)
]

(55)

where P7(r) is a power series of r as defined in the main text.
In practice, pmax of Eq. (53) was increased in order to

attain convergence in the P7(r) series up to eight decimal
figures.
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